Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jiyong Yao and James A. Ibers*

Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston,
IL 60208-3113, USA

Correspondence e-mail:
ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{W}-\mathrm{S})=0.001 \AA$
R factor $=0.023$
$w R$ factor $=0.061$
Data-to-parameter ratio $=27.3$

For details of how these key indicators were

 automatically derived from the article, see http://journals.iucr.org/e.(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Dirubidium tetrathiotungstate, $\mathbf{R b}_{\mathbf{2}}\left[\mathrm{WS}_{\mathbf{4}}\right]$

$\mathrm{Rb}_{2}\left[\mathrm{WS}_{4}\right]$ crystallizes in the orthorhombic space group Pnma and is isostructural with $\mathrm{Cs}_{2}\left[\mathrm{MoS}_{4}\right], \mathrm{Rb}_{2}\left[\mathrm{MoS}_{4}\right], \mathrm{K}_{2}\left[\mathrm{MoS}_{4}\right]$ and $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{WS}_{4}\right]$. The structure contains discrete tetrahedral $\left[\mathrm{WS}_{4}\right]^{2-}$ anions of symmetry m, separated by Rb^{+}cations. One of the two unique Rb^{+}cations is surrounded by nine S atoms and the other by ten S atoms.

Comment

The reactive flux method (Sunshine et al., 1987), which is a very effective means of synthesizing metal chalcogenides, has been employed here to afford $\mathrm{Rb}_{2}\left[\mathrm{WS}_{4}\right]$. This compound is isostructural with $\mathrm{Cs}_{2}\left[\mathrm{MoS}_{4}\right]$ (Raymond et al., 1995), $\mathrm{Rb}_{2}\left[\mathrm{MoS}_{4}\right]$ (Ellermeier et al., 1999), $\mathrm{K}_{2}\left[\mathrm{MoS}_{4}\right]$ (EmirdagEanes \& Ibers, 2001) and $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{WS}_{4}\right]$ (Sasvári, 1963). The cell constants and space group found for $\mathrm{Rb}_{2}\left[\mathrm{WS}_{4}\right]$ are consistent with an earlier determination from X-ray powder data $\left(a=9.69 \AA, b=7.10 \AA, c=12.45 \AA\right.$ and $V=855.7 \AA^{3}$; Müller \& Sievert, 1974). A view along [010] of the $\mathrm{Rb}_{2}\left[\mathrm{WS}_{4}\right]$ structure is shown in Fig. 1. The structure contains discrete $\left[\mathrm{WS}_{4}\right]^{2-}$ anions separated by Rb^{+}cations. The W atom is tetrahedrally coordinated by S atoms, with $\mathrm{W}-\mathrm{S}$ distances ranging from 2.171 (2) to 2.205 (1) \AA, comparable to those of 2.165-2.176 \AA in $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{WS}_{4}\right]$. The compound has two crystallographically unique Rb^{+}cations, one (Rb 1) surrounded by nine S atoms and the other (Rb 2) by ten S atoms. The $\mathrm{Rb}-\mathrm{S}$ distances range from 3.253 (2) to 3.950 (1) \AA.

Experimental

Yellow plates of $\mathrm{Rb}_{2}\left[\mathrm{WS}_{4}\right]$ were obtained from a solid-state reaction of $\mathrm{Rb}_{2} \mathrm{~S}_{3}(0.5 \mathrm{mmol})$, W (0.5 mmol , Aldrich, 99%) and $\mathrm{S}(2.0 \mathrm{mmol}$, Aldrich, 99.5%). $\mathrm{Rb}_{2} \mathrm{~S}_{3}$ was prepared by the stoichiometric reaction of Rb (Aldrich, $98+\%$) and S in liquid NH_{3}. The reactants were loaded into a fused-silica tube under an Ar atmosphere in a glovebox. The tube was sealed under a 10^{-4} torr atmosphere and then placed in a computer-controlled furnace. The sample was heated to 923 K in 15 h , kept at 923 K for 3 d , slowly cooled at $6 \mathrm{~K} \mathrm{~h}^{-1}$ to 373 K , and then cooled to room temperature.

Crystal data

$\mathrm{Rb}_{2}\left[\mathrm{WS}_{4}\right]$	Mo $K \alpha$ radiation
$M_{r}=483.03$	Cell parameters from 5262
Orthorhombic, Pnma	reflections
$a=9.6254(6) \AA$	$\theta=2.7-28.9^{\circ}$
$b=7.0218(5) \AA$	$\mu=26.27 \mathrm{~mm}^{-1}$
$c=12.3761(8) \AA$	$T=153(2) \mathrm{K}$
$V=836.47(10) \AA^{3}$	Plate, yellow
$Z=4$	$0.25 \times 0.12 \times 0.03 \mathrm{~mm}$
$D_{x}=3.836 \mathrm{Mg} \mathrm{m}^{-3}$	

Received 16 December 2003
Accepted 5 January 2004
Online 17 January 2004

Data collection

Bruker 1000 CCD diffractometer ω scans
Absorption correction: numerical face-indexed (XPREP in SHELXTL; Sheldrick, 2003)
$T_{\text {min }}=0.027, T_{\text {max }}=0.438$
6582 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.061$
$S=1.33$
1119 reflections
41 parameters

1119 independent reflections
1027 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=28.9^{\circ}$
$h=-12 \rightarrow 12$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 16$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.03 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=2.40 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-3.99 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0018 (2)

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{W}-\mathrm{S} 1$	$2.1710(17)$	$\mathrm{Rb} 1-\mathrm{S} 3^{\mathrm{iii}}$	$3.5936(4)$
$\mathrm{W}-\mathrm{S} 2^{\mathrm{i}}$	$2.1875(10)$	$\mathrm{Rb} 2-\mathrm{S} 3^{\mathrm{viii}}$	$3.4982(15)$
$\mathrm{W}-\mathrm{S} 2$	$2.1875(9)$	$\mathrm{Rb} 2-\mathrm{S} 2$	$3.5396(11)$
$\mathrm{W}-\mathrm{S} 3$	$2.2053(14)$	$\mathrm{Rb} 2-\mathrm{S} 2^{\mathrm{i}}$	$3.5396(11)$
$\mathrm{Rb} 1-\mathrm{S} 1^{\mathrm{ii}}$	$3.2525(18)$	$\mathrm{Rb} 2-\mathrm{S} 1^{\mathrm{ix}}$	$3.5504(4)$
$\mathrm{Rb} 1-\mathrm{S} 1$	$3.3219(18)$	$\mathrm{Rb} 2-\mathrm{S} 1^{\mathrm{vi}}$	$3.5504(4)$
$\mathrm{Rb} 1-\mathrm{S} 2^{\mathrm{iii}}$	$3.4202(11)$	$\mathrm{Rb} 2-\mathrm{S} 2^{\mathrm{vi}}$	$3.5873(14)$
$\mathrm{Rb} 1-\mathrm{S} 2^{\text {iv }}$	$3.4202(11)$	$\mathrm{Rb} 2-\mathrm{S} 2^{\mathrm{v}}$	$3.5873(14)$
$\mathrm{Rb} 1-\mathrm{S} 3^{\text {ii }}$	$3.4496(17)$	$\mathrm{Rb} 2-\mathrm{S} 3^{\mathrm{x}}$	$3.7483(17)$
$\mathrm{Rb} 1-\mathrm{S} 2^{\mathrm{v}}$	$3.4663(12)$	$\mathrm{Rb} 2-\mathrm{S} 2^{\mathrm{xi}}$	$3.9503(13)$
$\mathrm{Rb} 1-\mathrm{S} 2^{\mathrm{vi}}$	$3.4663(12)$	$\mathrm{Rb} 2-\mathrm{S} 2^{\mathrm{x}}$	$3.9503(13)$
$\mathrm{Rb} 1-\mathrm{S} 3^{\mathrm{vii}}$	$3.5936(4)$		
$\mathrm{S} 1-\mathrm{W}-\mathrm{S} 2^{\mathrm{i}}$	$108.92(4)$	$\mathrm{S} 1-\mathrm{W}-\mathrm{S} 3$	$111.48(6)$
$\mathrm{S} 1-\mathrm{W}-\mathrm{S} 2$	$108.92(4)$	$\mathrm{S} 2^{\mathrm{i}}-\mathrm{W}-\mathrm{S} 3$	$109.72(3)$
$\mathrm{S} 2^{\mathrm{i}}-\mathrm{W}-\mathrm{S} 2$	$108.01(6)$	$\mathrm{S} 2-\mathrm{W}-\mathrm{S} 3$	$109.72(3)$

Symmetry codes: (i) $x, \frac{1}{2}-y, z$; (ii) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (iii) $\frac{1}{2}-x,-y, z-\frac{1}{2}$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y, z-\frac{1}{2}$; (v) $1-x, \frac{1}{2}+y, 1-z$; (vi) $1-x,-y, 1-z$; (vii) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$; (viii) $1+x, y, z$; (ix) $1-x, 1-y, 1-z$; (x) $\frac{1}{2}+x, y, \frac{3}{2}-z$; (xi) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{3}{2}-z$.

The highest difference peak is located at a distance of $0.07 \AA$ from the W atom, and the deepest hole is $0.69 \AA$ from the same atom.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine

Figure 1
The structure of $\mathrm{Rb}_{2}\left[\mathrm{WS}_{4}\right]$, viewed down [010].
structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by US National Science Foundation grant No. DMR00-96676. Use was made of the Central Facilities supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Ellermeier, J., Näther, C. \& Bensch, W. (1999). Acta Cryst. C55, 1748-1751.
Emirdag-Eanes, M. \& Ibers, J. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 484.

Müller, A. \& Sievert, W. (1974). Z. Anorg. Allg. Chem. 408, 251-266.
Raymond, C. C., Dorhout, P. K. \& Miller, S. M. (1995). Z. Kristallogr. 210, 775. Sasvári, K. (1963). Acta Cryst. 16, 719-724.
Sheldrick, G. M. (2003). SHELXTL. DOS/Windows/NT Version 6.13. Bruker AXS Inc., Madison, Wisconsin, USA.
Sunshine, S. A., Kang, D. \& Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 62026204.

